A TOMOORAPHIC IMAGE OF MANTLE STRUCfURE BENEATH SOUTHERN CALIFORNIA
نویسندگان
چکیده
We determined the variations in seismic structure beneath southern California by using a tomographic method of inversion on teleseismic P delays recorded with the Southern California Array. The algorithm employed was a modified form of an Algebraic Reconstruction Technique (ART) used in medical X-ray imaging. Deconvolution with an empirically estimated point spread function was also used to help in focusing the image. The inversion reveals two prominent features beneath the region. The first is a thin, vertical wedge directly beneath the Transverse Ranges that is 2-3% faster than the surrounding region. This feature deepens to the east, attaining a maximum depth of about 250 km beneath the San Bernardino Mountains. The second feature is a major zone of low velocity material that is 2-4% slow under the Salton Trough rift valley, extending to a depth of about 125 km. Two possible explanations for the spatial association of the Transverse Ranges with the velocity anomaly below are lithospheric subduction or small-scale sublithospheric convection in the region of the Big Bend of the San Andreas Fault. The low velocity anomaly beneath the Salton Trough is consistent with convective upwelling there.
منابع مشابه
Seismic evidence for lithospheric modification beneath the Mojave Neovolcanic Province, Southern California
[1] The Mojave Neovolcanic Province (MNVP), located in the Mojave block of southern California, comprises late Miocene to Quaternary small-volume basaltic centers. Geochemistry indicates an asthenospheric source for the MNVP beginning in the late Miocene, but no physical evidence of missing mantle lithosphere has been presented. We utilize receiver functions and ambient noise tomography to imag...
متن کاملA Tomographic Image of Mantle Structure beneath Southern California
We determined the variations in seismic structure beneath southern California by using a tomographic method of inversion on teleseismic P delays recorded with the Southern California Array. The algorithm employed was a modified form of an Algebraic Reconstruction Technique (ART) used in medical X-ray imaging. Deconvolution with an empirically estimated point spread function was also used to hel...
متن کاملPetrological Evolution of the Upper Mantle Beneath the Southern Sanandaj-Sirjan Zone: Evidence from Kuhshah Peridotite Massif, Southeast Iran
The Kuhshah ultramafic complex is located in the south-east of Sanandaj-Sirjan metamorphic zone, near the probable remnants of Neotethys plate in Iran. It consists of highly depleted harzburgites, dunites, chromitite bands and altered gabbros. The ultramafic parts have been intruded by numerous clinopyroxenite dykes and veins. In the harzburgites, there are different generations of olivine, ort...
متن کاملMantle Heterogeneities and the SCEC Reference Three - Dimensional Seismic Velocity Model
We determine upper mantle seismic velocity heterogeneities below Southern California from the inversion of teleseismic travel-time residuals. Teleseismic P-wave arrival times are obtained from three temporary passive experiments and Southern California Seismic Network (SCSN) stations, producing good raypath coverage. The inversion is performed using a damped least-squares conjugate gradient met...
متن کاملFoundering lithosphere imaged beneath the southern Sierra Nevada, California, USA.
Seismic tomography reveals garnet-rich crust and mantle lithosphere descending into the upper mantle beneath the southeastern Sierra Nevada. The descending lithosphere consists of two layers: an iron-rich eclogite above a magnesium-rich garnet peridotite. These results place descending eclogite above and east of high P wave speed material previously imaged beneath the southern Great Valley, sug...
متن کامل